# POZNAN UNIVERSITY OF TECHNOLOGY



### EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

# **COURSE DESCRIPTION CARD - SYLLABUS**

Course name

Modern technologies for transmission and distribution of electric energy

**Course** 

Field of study Year/Semester

Electrotechnics 2/3

Area of study (specialization) Profile of study

Electric Power Systems general academic

Course offered in

Polish

Level of study Requirements

Second-cycle studies elective

Form of study

full-time

**Number of hours** 

Lecture Laboratory classes Other (e.g. online)

0 15 0

Tutorials Projects/seminars

0 15

**Number of credit points** 

3

#### **Lecturers**

Responsible for the course/lecturer: Responsible for the course/lecturer:

prof. dr hab.inż. Aleksandra Rakowska dr inż. Bartosz Ceran

e-mail: aleksandra.rakowska@put.poznan.pl e-mail: bartosz.ceran@put.poznan.pl

tel. 616652616 tel. 616652523

Faculty of Environmental Engineering and Faculty of Environmental Engineering and

Energy Ener

3A Piotrowo Str., 60-965 Poznan 3A Piotrowo Str., 60-965 Poznan

# **Prerequisites**

Has structured and theoretically founded knowledge of the design of electrical devices and systems, taking into account their impact on the environment

Is able to - when formulating and solving engineering tasks - integrate knowledge from various sources and related disciplines and apply analytical, simulation and experimental methods

Is able to independently plan and implement their own lifelong learning to improve professional and social competences

# **Course objective**

Acquainting with phenomena related to the transmission and distribution of electricity as well as

# POZNAN UNIVERSITY OF TECHNOLOGY



### EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

methods of transmission and distribution of energy. Learning examples of technologies for the construction of transmission and distribution lines

## **Course-related learning outcomes**

## Knowledge

Has knowledge of development trends and the most important new achievements as well as contemporary engineering dilemmas

Has structured and theoretically grounded knowledge in the field of power grid design with regard to their impact on the environment.

#### Skills

Is able to assess the usefulness and possibility of using new technical and technological achievements in the design of power lines networks containing innovative solutions

### Social competences

Recognizes the importance of knowledge in solving cognitive and practical problems and understands that in the technology knowledge and skills quickly become obsolete, and therefore require constant refilling

# Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

#### Laboratory

- assessment of knowledge and skills related to the implementation of the exercise task, evaluation of the report of the exercise

#### Project

- assessmet of the effectiveness of the application of knowledge in the implementation of the project

# **Programme content**

### Laboratory

Modeling of transmission systems in the Matlab / Simulink environment

#### Project

Design rules for transmission and distribution of overhead power lines and cable and gas insulated lines (GIL). Design of AC and DC power lines

## **Teaching methods**

#### Laboratory

Laboratory exercises performed with the help of engineering programs

#### Project

Independent solution of a design problem in the field of transmission system design

# POZNAN UNIVERSITY OF TECHNOLOGY



### EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

# **Bibliography**

#### Basic

- 1. Wasiak I., Elektroenergetyka w zarysie, Przesył i rozdział energii elektrycznej, Łódź 2010, dostęp Internet
- 2. Hoły A., Wiatr J., Podstawy projektowania elektroenergetycznych linii napowietrznych, Dom Wydawniczy MEDIUM, 2014
- 3. Wiatr J., Orzechowski M., Lenartowicz R., Podstawy projektowania i budowy elektroenergetycznych linii kablowych SN, Dom Wydawniczy MEDIUM, 2009
- 4. Jakubowski J., Cichy A., Rakowska A., Wytyczne projektowania linii kablowych 110 kV, Wydawnictwo PTPiREE, Poznań, 2019

#### Additional

Catalogs and websites of domestic and global producers of overhead line components as well as medium and high voltage cable lines. The conference materials and technical brochures provided by the lecturer

# Breakdown of average student's workload

|                                                                                           | Hours | ECTS |
|-------------------------------------------------------------------------------------------|-------|------|
| Total workload                                                                            | 80    | 3    |
| Classes requiring direct contact with the teacher                                         | 48    | 2    |
| Student's own work (literature studies, preparation for                                   | 32    | 1    |
| laboratory classes, preparation for project classes and project preparation) <sup>1</sup> |       |      |

3

<sup>&</sup>lt;sup>1</sup> delete or add other activities as appropriate